Axisymmetric magnetic mirror applications – neutron source to fusion power plant

A. W. Molvik, R. W. Moir, D. D. Ryutov (LLNL)
T. C. Simonen (UC Berkeley)

15th International Conference on Emerging Nuclear Energy Systems
May 15-19, 2011
San Francisco, CA, USA

Work performed under auspices of the U.S. Department of Energy, Oak Ridge Associated Universities, the University of California, Berkeley, and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-PRES-484188
Outline

<table>
<thead>
<tr>
<th>Neutron source</th>
<th>Fusion-fission hybrid</th>
<th>Pure fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk:
- Minor extension of tested physics
- Q ~ 0.07
- Q ≤ 0.7 low risk – test line-tied stability
- Test MHD & micro-stability

Fusion power
- Q > 0.7
- 0.2 < Q ≤ 10
- Q > 10

Drive power
- Q > 4 (tandem) competes with fission breeders
- Simpler fusion power. Perhaps thick-liquid walls

Motivation
- Materials/component R&D for MFE, IFE DEMO
- Materials/component R&D for MFE, IFE DEMO
- Materials/component R&D for MFE, IFE DEMO

A. W. Molvik

ICENES-2011
Gas Dynamic Trap (GDT) at Novosibirsk – stable, axisymmetric magnetic mirror

Long-pulse to steady-state 5 MW GDT could test plasma-materials interactions (PMI) to 400 MW/m², to simulate diverter heat loads. – R. Goldston

Warm plasma:

\[10^{19}-10^{20} \text{ m}^{-3}, \ T_e \sim 200 \text{ eV}\]

Fast ions \((H^+, D^+):\)

\[\sim 5 \times 10^{19} \text{ m}^{-3}, \langle E \rangle \approx 10 \text{ keV}\]

\[\beta \leq 60\%\]
Performance of various neutron sources

<table>
<thead>
<tr>
<th></th>
<th>RTNS 1982-87 D-T</th>
<th>IFMIF D+Li</th>
<th>DTNS (FNSF) D-T</th>
<th>FNSF (FDF/CTF) D-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron Power (MW)</td>
<td>20 W</td>
<td>0.1</td>
<td>2</td>
<td>100-300 30-160</td>
</tr>
<tr>
<td>Flux (MW/m²)</td>
<td>0.2</td>
<td>2/5</td>
<td>2</td>
<td>2 - 3 1 - 3</td>
</tr>
<tr>
<td>Availability goal</td>
<td>≥0.7</td>
<td>≥0.7</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Area (m²)</td>
<td>.0001</td>
<td>0.01</td>
<td>1</td>
<td>70 /15</td>
</tr>
<tr>
<td>Depth (cm)</td>
<td>5/1</td>
<td>5/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium (kg/FPY) [Full-Power Year]</td>
<td>~0</td>
<td>0</td>
<td>0.1</td>
<td>~2 to 20 without breeding</td>
</tr>
</tbody>
</table>

RTNS – Rotating Target Neutron Source
FNSF – Fusion Nuclear Science Facility (FDF & CTF are small D-T burning tokamaks for component development)
Neutron spectrum of DTNS – similar to ITER

- No spectrum conversion for displacements per atom (dpa), He/dpa, and H/dpa, or activation
- Activation data – no false positives from neutrons above 14 MeV

Dynamic-Trap Neutron Source (DTNS)

Optimized for materials test + significant subcomponent tests

Axisymmetric linear facility is maintainable, flexible, reconfigurable

A. W. Molvik

ICENES-2011
Development needed for FNSFs

Steady-state neutral beams: DTNS – 30 MW at ~80 keV
- Neutral beams reliable on tokamaks: TFTR (120 keV, 1 s \(\rightarrow 1000\) s)\(^1\) & DIII-D (80 keV, 5 s)\(^2\). Power 20-24 MW, availability 90-95%.
- **Lifetimes uncertain.** Ion source filament lifetime >2 weeks; sputter lifetime of accelerator electrodes similar order. Need ~1yr.
- Leverage NBI development from China, Korea, India?

Steady-state cryopumps
- All FNSF need cryopumps regenerated during full-power operation

Remote handling

A. W. Molvik

ICENES-2011
Direct conversion of NBI residual ion beam – option

Efficiency ~65% achieved, ~75% if mostly full-energy ions [1]

- Efficiency of ~70% possible
- Nearly eliminates decrease in efficiency at high-beam-energy
- Direct conversion (DC) can be added, or deleted; depends on R&D success.
- Save $5-10 M/yr at $0.10/kW hr

A. W. Molvik

ICENES-2011 8
Dynamic-Trap Neutron Source DTNS – low risk

• DTNS is extrapolation of successful GDT – low scientific risk
 – Neutral-beam energy x4 [to DIII-D level]
 – Neutral-beam current x1.5
 – $B_{\text{min}} \times 6$
 – Same plasma length, radius, and B_{peak}
 – $T_e \sim 0.8 \text{ keV}$ from scaling law

• DTNS not part of test – low technology risk
 – Power densities low on DTNS
 – Tritium-breeding blankets not required for fueling (burns ~0.1 kg/yr)
 – Samples outside vacuum wall, change wall during maintenance
 – Insert samples thru airlock: expose to α’s, PMI, neutrons >2 MW/m²?

• DTNS differs from tokamak FNSF:
 – Superconducting magnets – lower operating power/costs
 – Maintainable without individual magnets separating into 2 pieces
Mirror fusion-fission hybrid: burn waste or compete with fission breeder [Moir 1.4.3]

Detailed report is available – Moir, Martovetsky, Ryutov, Molvik, Simonen
Can axisymmetric mirrors provide pure fusion with Q>10?

- Need to demonstrate MHD and micro-stability with low end-loss, several mechanisms to test – at low cost on GDT.
- Power/particle balance computations: Q=10 solution (below)*, Q>10?
- Q=10 sufficient with direct conversion of end loss and neutral-beams?
- Helium-ash accumulation?

A. W. Molvik

ICENES-2011
Axisymmetric tandem mirrors – potential for attractive pure-fusion power

Strengths

- **All mirrors eliminate**
 - a. Disruptions (no significant plasma current)
 - b. High power density to diverter strike points (large area for end loss).

- **Axisymmetric mirrors**
 - a. Eliminate neoclassical and resonant radial transport
 - b. Allow high-B tandem mirror end cells, don’t need thermal barriers
 - c. Easy to maintain or modify
 - d. Low costs for stability tests, on GDT
 - e. Technologies within ITER range

- **Thick liquid walls of 0.5-1m thick molten-salt flibe eliminate most materials issues (dpa, He/dpa, H/dpa)**

Conclusions – Axisymmetric mirrors have attractive applications

• Long-pulse GDT could test PMI to 400 MW/m2 to simulate extreme diverter heat loads

• DTNS can test materials & subcomponents for a tokamak FNSF and a fusion DEMO

• Mirror fusion-fission hybrid: burn waste (single-cell) or compete with fission breeder (tandem mirror)

• Axisymmetric tandem mirrors have potential for attractive pure-fusion power
Selected References

